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include only nearest neighbors of molecules (A, K). 
Then each function PCr A -H;) was expanded about 
its value evaluated at the equilibrium lattice site 
r A = RA, and angle averaged. This procedure was 
similarly applied to the PCr, -Hi)' The_expectation 
value of the Hamiltonian [Eq. (8)] then reduced to 
an easily soluble two-dimensional integral. Al­
though the results were fairly promising, it was 
later established that the expansion of the f(r) 
about their equilibrium lattice p·ositions converge 
satisfactorily only for a limited class of pair cor­
relation functions, namely those which reach their 
asymptotic values for values of r '$ R o, where R o 
is the equilibrium nearest-neighbor separation. 
This limited variational capability was considered 
unsatisfactory and the procedure was therefore 
abandoned. 

A more direct approach, hereafter called the 
"static-field" approximation, is to evaluate Eq. 
(11) exactly but only for a limited number of cor­
relations. In bcc solid helium, for example, only 
pair correlations between atoms within three 
nearest-neighbor shells of atom A have any appre­
ciable effect on the behavior of the Ath atom and 
similarly for the Kth atom. All the other f(r) in 
Eq. (11) can be replaced by unity with the effect of 
changing predicted ground-state energies by less 
than 1%. For fcc molecular hydrogen, two nearest­
neighbor shells are sufficient to produce equivalent 
accuracy. The C(r)." r K ) resulting from this proce­
dure was substituted into Eq. (8) and the lattice 
sum was evaluated for all different (A, K) pairs up 
to tenth nearest neighbors_ Beyond that, lattice 
sums were evaluated for a classical static lattice. 
The error associated with this lattter procedure 
is extremely small, on the order of 0.1%. The 
six-dimensional integrals in Eq. (8) were evaluated 
on a 7094 computer. Although the results are 
reasonably good at low pressures, their agree­
ment with experiment becomes considerably worse 
as the pressure increases. Another disquieting 
feature of the calculation is that the minimum ener­
gy is obtained at all volumes for a value of the 
parameter J3 = O. The energy actually varies quite 
slowly with J3 for small (3. In the cluster expan­
sion, J3 = 0 implies that the solid is not stable 
because the functions cp (r) in Eq. (1) are no longer 
spatially localized. This difficulty does not exist 
in the static-field approximation because Crr )., r K) , 

rather than being unity as in the cluster expansion, 
is instead given by Eq. (11). The resulting internal 
field, acting on (A, K) produce the restoring force 
necessary to localize the atoms about their equilib­
rium lattice sites {R;}. This localization is 
evident upon calculating the single-particle distri­
bution function R(r), in terms of the atomic dis­
placement from equilibrium, r = / r; -H; /. These 

data are presented in Sec. IlIA. Nevertheless, the 
static-field approximation is, in some sense, in­
ternally inconsistent. On one hand the molecular­
field atoms are initially fixed on their equilibrium 
lattice sites by taking the limit (3 - 00 , yet the 
minimization of the energy gives the result J3 = 0 
for the test particles (A, K). 

C. Dynamic-field approximation 

It is believed that the lack of good agreement 
between the static field results and experiment is 
due primarily to the rigidity of the lattice produc­
ing the local molecular field on (A, K). As an exam­
ple, when an excursion of particle A takes it into 
close proximity to molecular-field atom j, the 
molecular-field atom will tend to move out of the 
way. This cannot happen in the static-field ap­
proximation. The motion of (A, K) is, therefore, 
restricted. In order to correct this deficiency in 
the theory, the motion of nearest neighbors to 
molecules A and K has been incorporated into the 
calculation of the molecular field. Then 

S ;Jtlfn A Pi'! nl'l K 

' =nn)., j=nnK 

(12) 
,==nnA K 

where the primes indicate that the product is not 
to include index A or K, nnA - nearest neighbors 
to particle A, nnAK - nearest neighbors to parti­
cles A and K. 

N,(r)., r.) = f p(r,,")f2 (r K,)cp2(r, -H,) dr, . (14) 

The first two products in Eq. (12) include all atoms 
which are second- or third-nearest neighbors to 
A or K. These products are simply the static-field 
terms. As in the static-field approximation, pair 
correlations beyond third-nearest neighbors are 
neglected, a procedure which leads to no appre­
ciable error. The third product in Eq. (12) ex­
tends over all nearest neighbors to A except for K. 

As an example, consider a bcc lattice with (A, K) 

nearest neighbors. Then there are seven terms in 
that product. The fourth product in Eq. (12) is, of 
course, similar to the third. The last product 
does not exist in this case because there are no 
nearest neighbors common to both A and K when 
they themselves are nearest neighbors. When A 

--
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and K are second-nearest neighbors, however, 
there are four atoms which are nearest neighbors 
to both A and K. Then, the last three products in 
Eq. (12) each contain four terms. Slightly different 
results are, of course, obtained for fcc and hcp 
structures. When A and K are third-nearest neigh­
bors or greater we simply return to the static­
field approximation, in which case 

MirK) "" j 2\rK-Rj ), 
(15) 

Again, for (A, K) separated farther than tenth­
nearest neighbors, the lattice sums are simply 
taken over a static lattice. Clearly, it is the in­
tegrals Nand M in Eq. (12) which provide the 
dynamical correlations connecting atoms (A, K) to 
the local field. Although the atOl,ns responsible for 
the local field couple dynamically to atoms A and 
K, they do not couple dynamically to one another, 
as evidenced by the separable integrals in Eq. (12). 
The reason for this fortunate circumstance is, of 
course, traced to the original approximation, 
exhibited in Eq. (10). This separability reduced an 
impossibly complex analysis to that of evaluating 
a simple nine-dimensional integral on the 7094 
computer. The details of this procedure are dis­
cussed in the Appendix. 

To summarize, the dynamical motion of the 
molecular-field atoms and the effect of this motion 
on the various pairs (A, K) considered only when A 
and K are either first- or second-nearest neighbors 
to one another. Then only molecular-field atoms 
which are nearest neighbors to A and/ or K are 
dynamically incorporated into the analysis. All 
other pair correlations are with a static field. It 
is clear that the dynamical correlations have been 
incorporated only into the leading terms in the 
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FIG. 1. Energy vs volume for solid bec 3He. A com­
parison is made with different theoretical and experi­
mental works. 

lattice sum, that is, for all first- and second­
nearest-neighbor pairs. Nevertheless, this is 
sufficient to dramatically improve the results. 
Additional dynamical contributions are found to be 
small. 

Within the dynamic-field approximation, the 
Single-particle distribution function R(r) is Simply 

(16) 

where dn A is the element of solid angle for the Ath 
particle, G(r., r Aj is given by Eq. (11), and the 
normalization R(O) = 1.0 is used. A similar ex­
pression as Eq. (16) exists for the root-mean­
square atomic deviation from its equilibrium lattice 
site ( r2)l k . The pressures and compressibilities 
are derived by taking appropriate derivatives of 
the ground-state energy with respect to the volume. 

m. RESULTS AND DISCUSSION 

A. Static-field approximation 

Results for the ground-state energy of solid bcc 
3He and 4He are presented on Figs. 1 and 2. We 
are not concerned with the fact that solid helium 
also exists in a close-packed lattice phase because 
the energy difference between different structures 
are known to be very small. In these figures, the 
circles represent the experimental datal2 and the 
dotted line represents the results of the static:­
field approximation. The triangles represent the 
Monte Carlo (Me) calculation of Hansen and 
Levesque l and the inverted triangles represent a 
similar MC calculation by Hansen and Pollock. 2 

Although the static-field results compare reason-
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FIG. 2. Energy vs volume for solid 4He. A compari­
son is made with different theoretical and experimental 
works. 


